Abstract
We provide new results for computing and comparing the quantum gate fidelity of quantum channels via their Choi matrices. We extend recent work that showed that there exist non-dual pairs of quantum channels with equal gate fidelity by providing an explicit characterization of all such channels. We use our characterization to show that when the dimension is 2 (or 3, under slightly stronger hypotheses), the gate fidelity of two channels is equal if and only if their difference equals the difference of some unital map and its dual—a fact that has been shown to be false when the dimension is 4 or larger. We also present a formula for the minimum gate fidelity of a channel in terms of a well-studied norm on a compression of its Choi matrix. As a consequence, several new ways of bounding and approximating the minimum gate fidelity follow, including a simple semidefinite program to compute it for qubit channels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics A: Mathematical and Theoretical
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.