Abstract

We compute the non-unitary geometric phase for the moving atom under the presence of the vacuum field and a dielectric mirror, analytically and numerically. We consider the atom (represented by a two-level system) moving in front of a dielectric plate, and study how decoherence of the particle’s internal degrees of freedom can be found in the corrections to the geometric phase accumulated by the atom. We consider the particle to follow a classical, macroscopically-fixed trajectory and by integrating over the vacuum field and the microscopic degrees of freedom of the plate we may calculate friction effects. We find a velocity dependance in the correction to the unitary geometric phase due to quantum frictional effects. We also show in which cases decoherence effects could, in principle, be controlled in order to perform a measurement of the geometric phase using standard interferometry procedures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call