Abstract

Quantum frequency conversion (QFC), which involves the exchange of frequency modes of photons, is a prerequisite for quantum interconnects among various quantum systems, primarily those based on telecom photonic network infrastructures. Compact and fiber-closed QFC modules are in high demand for such applications. In this paper, we report such a QFC module based on a fiber-coupled 4-port frequency converter with a periodically poled lithium niobate (PPLN) waveguide. The demonstrated QFC shifted the wavelength of a single photon from 780 to 1541 nm. The single photon was prepared via spontaneous parametric down-conversion (SPDC) with heralding photon detection, for which the cross-correlation function was 40.45 ± 0.09. The observed cross-correlation function of the photon pairs had a nonclassical value of 13.7 ± 0.4 after QFC at the maximum device efficiency of 0.73, which preserved the quantum statistical property. Such an efficient QFC module is useful for interfacing atomic systems and fiber-optic communication.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.