Abstract

Quantum frequency conversion, the process of shifting the frequency of an optical quantum state while preserving quantum coherence, can be used to produce non-classical light at otherwise unapproachable wavelengths. We present experimental results based on highly efficient sum-frequency generation (SFG) between a vacuum squeezed state at 1064 nm and a tunable pump source at 850 nm ± 50 nm for the generation of bright squeezed light at 472 nm ± 4 nm, currently limited by the phase-matching of the used nonlinear crystal. We demonstrate that the SFG process conserves part of the quantum coherence as a 4.2(±0.2) dB 1064 nm vacuum squeezed state is converted to a 1.6(±0.2) dB tunable bright blue squeezed state. We furthermore demonstrate simultaneous frequency- and spatial-mode conversion of the 1064-nm vacuum squeezed state, and measure 1.1(±0.2) dB and 0.4(±0.2) dB of squeezing in the TEM01 and TEM02 modes, respectively. With further development, we foresee that the source may find use within fields such as sensing, metrology, spectroscopy, and imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.