Abstract

Silicon-on-chip photonic circuits are among some very promising platforms for generating nonclassical photonic quantum state, because of its low loss, small footprint, and compatibility with complementary metal-oxide-semiconductor (CMOS) and telecommunications techniques. Dense wavelength division multiplexing (DWDM) is a leading technique for enhancing the transmission capacity of both classical and quantum communications. To bridge the frequency gap between silicon-chip and other quantum systems, such as quantum memories, a quantum interface is indispensable. Here, we demonstrate a quantum interface for multiplexed energy-time entanglement states, which are generated on a silicon micro-ring cavity that is based on frequency up-conversion. By switching the pump wavelength, energy-time entanglement from any channel can be selected at will after being up-converted. The high visibilities of two-photon interference over three channels after frequency up-conversion clearly prove that the entanglement is fully preserved during the quantum frequency conversion (QFC) process. Our work provides new perspectives regarding channel capacity enhancement in quantum communications and for quantum resources being transferred between two different quantum systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call