Abstract

The symmetric logarithmic derivative (SLD) is a key quantity to obtain quantum Fisher information (QFI) and to construct the corresponding optimal measurements. Here we develop a method to calculate the SLD and QFI via anti-commutators. This method has originated from the Lyapunov representation and would be very useful for cases where the anti-commutators among the state and its partial derivative exhibit periodic properties. As an application, we discuss a class of states whose squares linearly depend on the states themselves, and give the corresponding analytical expressions of SLD and QFI. A noisy scenario of this class of states is also considered and discussed. Finally, we readily apply the method to the block-diagonal states and the multi-parameter estimation scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.