Abstract
AbstractThe study of finite state automata working on infinite words was initiated by Büchi [1]. Büchi discovered connection between formulas of the monadic second order logic of infinite sequences (S1S) and ω-regular languages, the class of languages over infinite words accepted by finite state automata. Few years later, Muller proposed an alternative definition of finite automata on infinite words [4]. McNaughton proved that with Muller’s definition, deterministic automata recognize all ω-regular languages [2]. Later, Rabin extended decidability result of Büchi for S1S to the monadic second order of the infinite binary tree (S2S) [5]. Rabin theorem can be used to settle a number of decision problems in logic. A theory of automata over infinite words has started from these studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.