Abstract
AbstractThis paper provides a primer in quantum field theory (QFT) based on Hopf algebra and describes new Hopf algebraic constructions inspired by QFT concepts. The following QFT concepts are introduced: chronological products, S ‐matrix, Feynman diagrams, connected diagrams, Green functions, renormalization. The use of Hopf algebra for their definition allows for simple recursive derivations and leads to a correspondence between Feynman diagrams and semi‐standard Young tableaux. Reciprocally, these concepts are used as models to derive Hopf algebraic constructions such as a connected coregular action or a group structure on the linear maps from S (V) to V. In many cases, noncommutative analogues are derived (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.