Abstract

Atoms trapped in micro-cavities and interacting through the exchange of virtual photons can be modeled as an anisotropic Heisenberg spin-1/2 lattice. We do the quantum field theoretical study of such a system using the Abelian bosonization method followed by the renormalization group analysis. An infinite order Berezinskii–Kosterliz–Thouless transition is replaced by second order XY transition even when an infinitesimal anisotropy in exchange coupling is introduced. We predict a quantum phase transition between the photonic Coulomb blocked induce Mott insulating and photonic superfluid phases due to detuning between the cavity and laser frequency. A large detuning favors the photonic superfluid phase. We also perform the analysis of Jaynes and Cumming Hamiltonian to support the results of quantum field theoretical study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call