Abstract

Starting from the classical nonrelativistic electrodynamics in 1[Formula: see text]+[Formula: see text]1 dimensions, a higher-derivative version is proposed. This is made by adding a suitable higher-derivative term for the electromagnetic field to the Lagrangian of the original electrodynamics, preserving its gauge invariance. By following the usual Hamiltonian method for singular higher-derivative systems, the canonical quantization for the higher-derivative model is developed. By extending the Faddeev–Senjanovic algorithm, the path integral quantization is carried out. Hence, the Feynman rules are established and the diagrammatic structure is analyzed. The use of the higher-derivative term eliminates in the Landau gauge the ultraviolet divergence of the primitively divergent Feynman diagrams of the original model, where the electromagnetic field propagator is present. A generalization of the BRST quantization is also considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call