Abstract
Quantum Bernoulli noises (QBN) are the family of annihilation and creation operators acting on Bernoulli functionals, which satisfy a canonical anti-commutation relation in equal-time. In this paper, we aim to investigate quantum Feller semigroups in terms of QBN. We first investigate local structure of the algebra generated by identity operator and QBN. We then use our new results obtained here to construct a class of quantum Markov semigroups from QBN which enjoy Feller property. As an application of our results, we examine a special quantum Feller semigroup associated with QBN, when it reduced to a certain Abelian subalgebra, the semigroup gives rise to the semigroup generated by Ornstein–Uhlenbeck operator. Finally, we find a sufficient condition for the existence of faithful invariant states that are diagonal for the semigroup.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.