Abstract

In many proposed architectures for quantum computing the physics of the system prevent qubits from being individually controlled. In such systems universal computation may be possible via bulk manipulation of the system. Here, we describe a method to execute globally controlled quantum information processing which admits a fault tolerant quantum error correction scheme. Our scheme nominally uses three species of addressable two-level systems which are arranged in a one dimensional array in a specific periodic arrangement. We show that the scheme possesses a fault tolerant error threshold.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call