Abstract

AbstractThe notion of families of quantum invertible maps (C*–algebra homomorphisms satisfying Podleś condition) is employed to strengthen and reinterpret several results concerning universal quantum groups acting on finite quantum spaces. In particular, Wang's quantum automorphism groups are shown to be universal with respect to quantum families of invertible maps. Further, the construction of the Hopf image of Banica and Bichon is phrased in purely analytic language and employed to define the quantum subgroup generated by a family of quantum subgroups or, more generally, a family of quantum invertible maps.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.