Abstract
Exceptional points (EPs) correspond to degeneracies of open systems. These are attracting much interest in optics, optoelectronics, plasmonics, and condensed matter physics. In the classical and semiclassical approaches, Hamiltonian EPs (HEPs) are usually defined as degeneracies of non-Hermitian Hamiltonians such that at least two eigenfrequencies are identical and the corresponding eigenstates coalesce. HEPs result from continuous, mostly slow, nonunitary evolution without quantum jumps. Clearly, quantum jumps should be included in a fully quantum approach to make it equivalent to, e.g., the Lindblad master-equation approach. Thus, we suggest to define EPs via degeneracies of a Liouvillian superoperator (including the full Lindbladian term, LEPs), and we clarify the relations between HEPs and LEPs. We prove two main theorems: Theorem 1 proves that, in the quantum limit, LEPs and HEPs must have essentially different properties. Theorem 2 dictates a condition under which, in the ``semiclassical'' limit, LEPs and HEPs recover the same properties. In particular, we show the validity of Theorem 1 studying systems which have (1) an LEP but no HEPs, and (2) both LEPs and HEPs but for shifted parameters. As for Theorem 2, (3) we show that these two types of EPs become essentially equivalent in the semiclassical limit. We introduce a series of mathematical techniques to unveil analogies and differences between the HEPs and LEPs. We analytically compare LEPs and HEPs for some quantum and semiclassical prototype models with loss and gain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.