Abstract

Abstract Chapter 4 has introduced the functional integral representation of the quantum statistical operators and thus, formally, evolution in imaginary or Euclidean time. By contrast, to calculate the evolution operator and the scattering S-matrix elements, quantities relevant to particle physics, it is necessary to make a continuation from imaginary to real time. However, the representation of the S-matrix follows from additional considerations. To illustrate the power of the formalism, we show how to recover the perturbative expansion of the scattering amplitude, some semi-classical approximations, and the eikonal approximation. When the asymptotic states at large time are eigenstates of the harmonic oscillator, instead of free particles, the holomorphic formalism becomes useful. A simple generalization of the path integral of Chapter 4 leads to the corresponding path integral representation of the S-matrix. In the case of the Bose gas, the evolution operator is then given by a holomorphic field integral. A parallel formalism leads to an analogous representation for the evolution operator of a system of non-relativistic fermions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.