Abstract

Abstract We demonstrate that quantum error correction is realized by the renormalization group in scalar field theories. We construct q-level states by using coherent states in the IR region. By acting on them the inverse of the unitary operator U that describes the renormalization group flow of the ground state, we encode them into states in the UV region. We find the situations in which the Knill–Laflamme condition is satisfied for operators that create coherent states. We verify this to the first order in the perturbation theory. This result suggests a general relationship between the renormalization group and quantum error correction and should give insights into understanding the role played by them in the gauge/gravity correspondence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.