Abstract

Fault-tolerant quantum memory plays a key role in interfacing quantum computers with quantum networks to construct quantum computer networks. Manipulation of spin quantum memory generally requires a magnetic field, which hinders the integration with superconducting qubits. Completely zero-field operation is desirable for scaling up a quantum computer based on superconducting qubits. Here we demonstrate quantum error correction to protect the nuclear spin of the nitrogen as a quantum memory in a diamond nitrogen-vacancy center with two nuclear spins of the surrounding carbon isotopes under a zero magnetic field. The quantum error correction makes quantum memory resilient against operational or environmental errors without the need for magnetic fields and opens a way toward distributed quantum computation and a quantum internet with memory-based quantum interfaces or quantum repeaters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.