Abstract
This is an expository article aiming to introduce the reader to the underlying mathematics and geometry of quantum error correction. Information stored on quantum particles is subject to noise and interference from the environment. Quantum error-correcting codes allow the negation of these effects in order to successfully restore the original quantum information. We briefly describe the necessary quantum-mechanical background to be able to understand how quantum error correction works. We go on to construct quantum codes: firstly qubit stabilizer codes, then qubit non-stabilizer codes, and finally codes with a higher local dimension. We will delve into the geometry of these codes. This allows one to deduce the parameters of the code efficiently, deduce the inequivalence between codes that have the same parameters, and presents a useful tool in deducing the feasibility of certain parameters. We also include sections on quantum maximum distance separable codes and the quantum MacWilliams identities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annales de l’Institut Henri Poincaré D, Combinatorics, Physics and their Interactions
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.