Abstract

This paper is a proceedings version of \cite{CHT-I}, in which we state a Quantum Ergodicity (QE) theorem on a 3D contact manifold, and in which we establish some properties of the Quantum Limits (QL). We consider a sub-Riemannian (sR) metric on a compact 3D manifold with an oriented contact distribution. There exists a privileged choice of the contact form, with an associated Reeb vector field and a canonical volume form that coincides with the Popp measure. We state a QE theorem for the eigenfunctions of any associated sR Laplacian, under the assumption that the Reeb flow is ergodic. The limit measure is given by the normalized canonical contact measure. To our knowledge, this is the first extension of the usual Schnirelman theorem to a hypoelliptic operator. We provide as well a decomposition result of QL's, which is valid without any ergodicity assumption. We explain the main steps of the proof, and we discuss possible extensions to other sR geometries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.