Abstract

We present a quantum ergodicity theorem for fixed spectral window and sequences of compact hyperbolic surfaces converging to the hyperbolic plane in the sense of Benjamini and Schramm. This addresses a question posed by Colin de Verdi\`{e}re. Our theorem is inspired by results for eigenfunctions on large regular graphs by Anantharaman and the first-named author. It applies in particular to eigenfunctions on compact arithmetic surfaces in the level aspect, which connects it to a question of Nelson on Maass forms. The proof is based on a wave propagation approach recently considered by Brooks, Lindenstrauss and the first-named author on discrete graphs. It does not use any microlocal analysis, making it quite different from the usual proof of quantum ergodicity in the large eigenvalue limit. Moreover, we replace the wave propagator with renormalised averaging operators over discs, which simplifies the analysis and allows us to make use of a general ergodic theorem of Nevo. As a consequence of this approach, we require little regularity on the observables.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.