Abstract

The Schrödinger free particle equation in 1+1 dimension describes second-order effects in ensembles of lattice random walks, in addition to its role in quantum mechanics, and its solutions represent the continuous limit of a property of ensembles of Brownian particles. In the present paper, the classical Schrödinger and Dirac equations have been derived from the Brownian motions of a particle, and it has been shown that the classical Schrödinger equation can be transformed into the usual Schrödinger quantum equation on applying the Heisenberg uncertainty principle between position and momentum, while the Dirac quantum equation follows from its classical counterpart on applying the Heisenberg uncertainty principle between energy and time, without applying any analytical continuation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.