Abstract

Quantum entanglement offers a unique perspective into the underlying structure of strongly-correlated systems such as atomic nuclei. In this paper, we use quantum information tools to analyze the structure of light and medium-mass berillyum, oxygen, neon and calcium isotopes within the nuclear shell model. We use different entanglement metrics, including single-orbital entanglement, mutual information, and von Neumann entropies for different equipartitions of the shell-model valence space and identify mode-entanglement patterns related to the energy, angular momentum and isospin of the nuclear single-particle orbitals. We observe that the single-orbital entanglement is directly related to the number of valence nucleons and the energy structure of the shell, while the mutual information highlights signatures of proton–proton and neutron–neutron pairing, as well as nuclear deformation. Proton and neutron orbitals are weakly entangled by all measures, and in fact have the lowest von Neumann entropies among all possible equipartitions of the valence space. In contrast, orbitals with opposite angular momentum projection have relatively large entropies, especially in spherical nuclei. This analysis provides a guide for designing more efficient quantum algorithms for the noisy intermediate-scale quantum era.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.