Abstract

We study the effect of quantum entanglement maintained by virtual excitations in an ultrastrongly-coupled harmonic-oscillator system. Here, the quantum entanglement is caused by the counterrotating interaction terms and hence it is maintained by the virtual excitations. We obtain the analytical expression for the ground state of the system and analyze the relationship between the average excitation numbers and the ground-state entanglement. We also study the entanglement dynamics between the two oscillators in both the closed- and open-system cases. In the latter case, the quantum master equation is microscopically derived in the normal-mode representation of the coupled-oscillator system. This work will open a route to the study of quantum information processing and quantum physics based on virtual excitations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.