Abstract

We study the quantum entanglement of the quasiparticle pairs emitted by analogue black holes. We use a phenomenological description of the spectra in dispersive media to study the domains in parameter space where the final state is non-separable. In stationary flows, three modes are involved in each sector of fixed frequency, and not two as in homogeneous situations. The third spectator mode acts as an environment for the pairs, and the strength of the coupling significantly reduces the quantum coherence. The non-separability of the pairs emitted by white holes are also considered, and compared with that of black holes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.