Abstract
We consider a theoretical model for a nonlinear nanomechanical resonator coupled to a superconducting microwave resonator. The nanomechanical resonator is driven parametrically at twice its resonance frequency, while the superconducting microwave resonator is driven with two tones that differ in frequency by an amount equal to the parametric driving frequency. We show that the semiclassical approximation of this system has an interesting fixed-point bifurcation structure. In the semiclassical dynamics a transition from stable fixed points to limit cycles is observed as one moves from positive to negative detuning. We show that signatures of this bifurcation structure are also present in the full dissipative quantum system and further show that the bifurcation structure leads to mixed-state entanglement between the nanomechanical resonator and the microwave cavity in the dissipative quantum system that is a maximum close to the semiclassical bifurcation. Quantum signatures of the semiclassical limit cycles are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.