Abstract

We examine QED(3+1) quantised in the `front form' with finite `volume' regularisation, namely in Discretised Light-Cone Quantisation. Instead of the light-cone or Coulomb gauges, we impose the light-front Weyl gauge $A^-=0$. The Dirac method is used to arrive at the quantum commutation relations for the independent variables. We apply `quantum mechanical gauge fixing' to implement Gau{\ss}' law, and derive the physical Hamiltonian in terms of unconstrained variables. As in the instant form, this Hamiltonian is invariant under global residual gauge transformations, namely displacements. On the light-cone the symmetry manifests itself quite differently.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call