Abstract

We present a systematic examination of finite temperature effects in quantum electrodynamics at one loop order. We calculate mass, charge, and wavefunction renormalization, demonstrate the running of the coupling constant at high temperatures, and study the renormalized vertex function and the energy momentum tensor. The confusion in the literature concerning the finite temperature corrections to the electron's magnetic moment is resolved. We also present the finite temperature effects in scalar electrodynamics. Throughout we stress the need to provide a well-defined method to observe a given quantity when interpreting the results of a calculation, and we suggest new techniques which incorporate the novel features of finite temperature theories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.