Abstract
The quantum efficiency of the blue–green transmission-mode GaAlAs photocathode has been studied. Two transmission-mode GaAlAs photocathodes with different structures are prepared, and the quantum efficiency curves are measured. We use the quantum efficiency formula to fit the experimental curves, and obtain the performance parameters of photocathodes such as the electron diffusion length, the back interface recombination velocity, and the surface electron escape probability. The effects of the Al compositions, the thickness of emission layer, and the electron diffusion length on quantum efficiency are investigated. The results show that both of transmission-mode GaAlAs photocathodes are sensitive to the blue–green light. The peak quantum efficiency of one photocathode appears at about 565nm, while that of another photocathode appears at about 535nm. The Al composition of emission layer plays a major role on the peak position of quantum efficiency of transmission-mode GaAlAs photocathode. Besides, the thickness of emission layer and the Al composition of window layer also have a large influence on the quantum efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.