Abstract

An investigation was made of the ratios of the intensity Idf of the singlet-oxygen(1O2)-sensitised delayed fluorescence of the zinc complex of tetra(4-tert-butyl)phthalocyanine (ZnTBPc), with the maximum at λ = 685 nm, to the intensity I1270 of the photosensitised phosphorescence of 1O2 with the maximum at λ = 1270 nm in deuterated benzene when excited with λ = 337 nm nitrogen-laser pulses. Depending on the energy density of the laser radiation (0.25 — 0.7 mJ cm-2) and on the concentration of ZnTBPc (0.06 — 3.4 μM), the ratio of the zero-time intensities of the delayed fluorescence of ZnTBPc and of the singlet-oxygen phosphorescence Idf0/I12700 varied from 0.01 to 0.2 in air-saturated solutions of ZnTBPc. The intensity Idf0 decreased fivefold as a result of saturation with oxygen of air-saturated solutions. The quantum efficiency of the delayed fluorescence was represented by the coefficient α =(Idf0/I12700)kr/(γf[1O2]0[ZnTBPc]), where [1O2]0 is the zero-time concentration of 1O2 after a laser shot; kr is the rate constant of radiative deactivation of 1O2 in the investigated solvent; γf is the quantum yield of the ZnTBPc fluorescence. It was established that in the case of air-saturated solutions of ZnTBPc this coefficient was approximately 200 times less than for metal-free tetra(4-tert-butyl)phthalocyanine and its absolute value was ~2 × 1011 M-2 s-1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call