Abstract
This paper studies photoelectron emission from metal surfaces with laser wavelengths from 200 to 1200 nm (i.e., ultraviolet to near-infrared), using a recent quantum model based on the exact solution of time-dependent Schrödinger equation. The dominant electron emission mechanism varies from different multiphoton emission processes to dc or optical field emission, depending on the laser intensity, wavelength, and dc bias field. The parametric dependence of the quantum efficiency (QE) is analyzed in detail. It is found that QE can be increased nonlinearly by the non-equilibrium electron heating produced by intense sub-picosecond laser pulses. This increase of QE due to laser heating is the strongest near laser wavelengths where the cathode work function is an integer multiple of the corresponding laser photon energy. The quantum model, with laser heating effects included, reproduces previous experimental results, which further validates our quantum model and the importance of laser heating.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.