Abstract

A quantum efficiency(QE) measurement system has been established for CsI photocathodes in the wavelength range of 120–210 nm by using the synchrotron radiation light source at Beijing Synchrotron Radiation Laboratory (BSRF). An AXUV100G photodiode calibrated by Physikalisch-Technische Bundesanstalt (PTB) was used as the transfer detector standard to ensure the accuracy and reliability of the QE measurement. The dependencies of QE measurement on beam energy, vacuum pressure and bias voltage were studied in detail. The influence of photoionization in gas on the QE measurement was observed and is described. The surface morphological characteristics of both substrate and CsI film were analyzed by atomic force microscopy (AFM). The QE results of differently prepared CsI photocathodes were compared, including: the printed circuit board (PCB) of FR-4 (Woven glass and epoxy)+Cu, FR-4+Cu/Ni/Au, and stainless steel substrates; a series of thickness from 60 to 600 nm; and the resistive and electron beam evaporation techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.