Abstract

We report quantum efficiency (QE) enhancements in accelerator technology relevant antimonide photocathodes (K2CsSb) by interfacing them with atomically thin two-dimensional (2D) crystal layers. The enhancement occurs in a reflection mode, when a 2D crystal is placed in between the photocathodes and optically reflective substrates. Specifically, the peak QE at 405 nm (3.1 eV) increases by a relative 10 percent, while the long wavelength response at 633 nm (2.0 eV) increases by a relative 36 percent on average and up to 80 percent at localized hot spot regions when photocathodes are deposited onto graphene coated stainless steel. There is a similar effect for photocathodes deposited on hexagonal boron nitride monolayer coatings using nickel substrates. The enhancement does not occur when reflective substrates are replaced with optically transparent sapphire. Optical transmission, X-ray diffraction (XRD) and X-ray fluorescence (XRF) revealed that thickness, crystal orientation, quality and elemental stoichiometry of photocathodes do not appreciably change due to 2D crystal coatings. These results suggest optical interactions are responsible for the QE enhancements when 2D crystal sublayers are present on reflective substrates, and provide a pathway toward a simple method of QE enhancement in semiconductor photocathodes by an atomically thin 2D crystal on substrates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.