Abstract

In this paper, we apply the Gauss–Bonnet (GB) theorem to calculate the deflection angle by a quantum-corrected Schwarzschild black hole in the weak limit approximation. In particular, we calculate the light deflection by two types of quantum-corrected black holes: the renormalization group improved Schwarzschild solution and the quantum-corrected Schwarzschild solution in Bohmian quantum mechanics. We start from the corresponding optical metrics to use then the GB theorem and calculate the Gaussian curvature in both cases. We calculate the leading terms of the deflection angle and show that quantum corrections modify the deflection angle in both solutions. Finally by performing geodesics calculations we show that GB method gives exact results in leading-order terms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.