Abstract

The one-loop long distance quantum corrections to the Newtonian potential imply tiny but observable effects in the restricted three-body problem of celestial mechanics, i.e., both at the Lagrangian points of stable equilibrium and at those of unstable equilibrium the Newtonian values of planetoid's coordinates are changed by a few millimetres in the Earth-Moon system. First, we find that the equations governing the position of both noncollinear and collinear quantum libration points are algebraic fifth degree and ninth degree equations, respectively. Second, we discuss the prospects to measure, with the help of laser ranging, the above departure from the equilateral triangle picture, which is a challenging task. On the other hand, a modern version of the planetoid is the solar sail, and much progress has been made, in recent years, on the displaced periodic orbits of solar sails at all libration points. By taking into account the quantum corrections to the Newtonian potential, displaced periodic orbits of the solar sail at libration points are again found to exist.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call