Abstract

The laws of thermodynamics apply equally well to quantum systems as to classical systems, and because of this, quantum effects do not change the fundamental thermodynamic efficiency of isothermal refrigerators or engines. We show that, despite this fact, quantum mechanics permits measurement-based feedback control protocols that are more thermodynamically efficient than their classical counterparts. As part of our analysis, we perform a detailed accounting of the thermodynamics of unitary feedback control and elucidate the sources of inefficiency in measurement-based and coherent feedback.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call