Abstract

We obtain an Einstein metric of constant negative curvature given an arbitrary boundary metric in three dimensions, and a conformally flat one given an arbitrary conformally flat boundary metric in other dimensions. In order to compute the on-shell value of the gravitational action for these solutions, we propose to integrate the radial coordinate from the boundary till a critical value where the bulk volume element vanishes. The result, which is a functional of the boundary metric, provides a sector of the quantum effective action common to all conformal field theories that have a gravitational description. We verify that the so-defined boundary effective action is conformally invariant in odd (boundary) dimensions and has the correct conformal anomaly in even (boundary) dimensions. In three dimensions and for arbitrary static boundary metric the bulk metric takes a rather simple form. We explicitly carry out the computation of the corresponding effective action and find that it equals the non-local Polyakov action.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.