Abstract

Path integral influence functional theory has been applied to the investigation of the quantum effect of the solvent on vibrational relaxation of the solute. A classical bath approximation was attained by taking the ℏ→0 limit with respect to the solvent degrees of freedom. A comparison of the calculated relaxation time for the quantum solvent with that for the classical one showed that the quantum effect is very large and, at the same time, it depends much upon the process, i.e., single-phonon process, two-phonon process, or three-phonon process. This indicates that the so-called quantum correction does not work since the relaxation is usually a mixture of these multiphonon processes. A numerical example for CN− in water also demonstrates that, although the classical approximation for the solvent significantly overestimates the relaxation time, it presents reliable energy transfer pathways or relaxation mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.