Abstract

Accurate time-dependent (TD) quantum wavepacket calculations are reported for the combustion reaction HD+OH. Due to the lack of symmetry, the HD+OH reaction has roughly twice the number of channels of the corresponding H2+OH reaction and produces two distinguishable products–HOH and HOD. In order to make the TD calculation possible on workstations with limited memories, we employed a normalized quadrature scheme in the wavepacket propagation by the split-operator propagator. The normalized quadrature scheme eliminates the need to store large matrices during the wavepacket propagation while preserving the unitarity of the split-operator propagator and producing numerically stable results. This approach made TD dynamics calculations possible on small-memory workstations for the title reaction and for other polyatomic reactions. Reaction probabilities, cross sections, rate constants, and reaction branching ratios are reported in this paper for the title reaction. The observed strong dependence of the reaction probabilities on the reactive HD rotation and the relative weak dependence on the nonreactive OH rotation are explained in terms of a steric effect. The isotope effect in the branching ratio is examined and physical explanation is given for the observed branching ratio at low and high kinetic energies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call