Abstract
We demonstrate a postquench dynamics simulation of a Heisenberg model on present-day IBM quantum hardware that extends beyond the coherence time of the device. This is achieved using a hybrid quantum-classical algorithm that propagates a state using Trotter evolution and then performs a classical optimization that effectively compresses the time-evolved state into a variational form. When iterated, this procedure enables simulations to arbitrary times with an error controlled by the compression fidelity and a fixed Trotter step size. We show how to measure the required cost function, the overlap between the time-evolved and variational states, on present-day hardware, making use of several error mitigation methods. In addition to carrying out simulations on real hardware, we investigate the performance and scaling behavior of the algorithm with noiseless and noisy classical simulations. We find the main bottleneck in going to larger system sizes to be the difficulty of carrying out the optimization of the noisy cost function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.