Abstract
Advancement in high-performance computing allows us to calculate properties of increasingly complex materials with unprecedented accuracy. At the same time, to take full advantage of modern leadership-class supercomputers, the calculations need to scale well on hundreds of thousands of processing cores. We demonstrate such high scalability of our recently developed implementation of Ehrenfest non-adiabatic electron-ion dynamics up to 1 million floating-point processing units on two different leadership-class computing architectures. As a representative example of material properties that derive from quantum dynamics of electrons, we demonstrate the accurate calculation of electronic stopping power, which characterizes the rate of energy transfer from a high-energy particle to electrons in materials. We discuss the specific case of crystalline gold with a hydrogen atom as the high-energy particle, and we illustrate detailed scientific insights that can be obtained from the quantum dynamics simulation at the electronic structure level. Please note that two animation videos of the time evolution for Figure 3 are available as Web extras at http://youtu.be/WxiMZ2DVBbM and http://youtu.be/bAcaxF9ARzM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.