Abstract
Quantum-mechanical calculations are reported for the Li+HF(v=0,1,j=0)-->H+LiF(v',j') bimolecular scattering process at low and ultralow temperatures. Calculations have been performed for zero total angular momentum using a recent high-accuracy potential-energy surface for the X2A' electronic ground state. For Li+HF(v=0,j=0), the reaction is dominated by resonances due to the decay of metastable states of the Li cdots,...F-H van der Waals complex. Assignment of these resonances has been carried out by calculating the eigenenergies of the quasibound states. We also find that while chemical reactivity is greatly enhanced by vibrational excitation, the resonances get mostly washed out in the reaction of vibrationally excited HF with Li atoms. In addition, we find that at low energies, the reaction is significantly suppressed due to the less-efficient tunneling of the relatively heavy fluorine atom.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.