Abstract
In this paper, our focus is on investigating the impact of cosmological constant on relativistic quantum systems comprising spin-0 scalar particles. Our analysis centers around the Klein-Gordon equation, and we obtain both approximate and exact analytical solutions for spin-0 particles of the quantum system. Afterwards, we explore quantum oscillator fields by considering the Klein-Gordon oscillator within the same space-time characterized by a cosmological constant. We obtain an approximate expression for the energy eigenvalue of the oscillator fields. In fact, the energy spectra in both scenarios are examined and show the influences of the cosmological constant and geometry's topology. Our investigation is situated within the context of a magnetic universe-a four-dimensional cosmological space-time recognized as the Bonnor-Melvin universe.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Nuclear Physics B
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.