Abstract

Complex-forming reactions widely exist in gas-phase chemical reactions. Various complex-forming bimolecular reactions have been investigated and interesting phenomena have been discovered. The complex-forming reactions usually have small or no barrier in the entrance channel, which leads to obvious differences in kinetic and dynamic characteristics compared with direct reactions. Theoretically, quantum state-resolved reaction dynamics can provide the most detailed microscopic dynamic mechanisms and is now feasible for a direct reaction with only one potential barrier. However, it is of great challenge to construct accurate potential energy surfaces and perform accurate quantum dynamics calculations for a complex polyatomic reaction involving deep potential wells and multi-channels. This paper reviews the most recent progress in two prototypical oxyhydrogen complex-forming reaction systems, HO2 and HO3, which are significant in combustion, atmospheric, and interstellar chemistry. We will present a brief survey of both computational and experimental work and emphasize on some unsolved problems existing in these systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call