Abstract

High resolution spectroscopy of doped molecules in 4He nano-droplets and clusters gives a signature of superfluidity in microscopic system, termed as microscopic superfluidity. Ro-vibrational spectrum of 4HeN-M clusters is studied with the help of some important observations, revealed from experiments (viz., localised and orderly arrangement of 4He atoms, although, being free to move in the order of their locations; individual 4He atoms can not be tagged as normal/ superfluid, etc.) and other factors (e.g., consideration that the 4He atoms which happen to fall in the plane of rotation of a molecule, render a equipotential ring and thus, do not take part in rotation; etc.) which effect the rotational and vibrational spectrum of the system. This helps us in successfully explaining the experimental findings which state that the rotational spectrum of clusters have sharp peaks (indicating that the molecule rotates like a free rotor) and moment of inertia and vibrational frequency shift have a non-trivial dependence on N.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call