Abstract

One of the elementary processes in quantum magnetism is the propagation of spin excitations. Here we study the quantum dynamics of a deterministically created spin-impurity atom, as it propagates in a one-dimensional lattice system [1]. We probe the spatial probability distribution of the impurity at different times using single-site-resolved imaging of bosonic atoms in an optical lattice. In the Mott-insulating regime, the quantum-coherent propagation of a magnetic excitation in the Heisenberg model can be observed using a post-selection technique. Extending the study to the superfluid regime of the bath, we quantitatively determine how the bath affects the motion of the impurity, showing evidence of polaronic behaviour. The experimental data agree with theoretical predictions, allowing us to determine the effect of temperature on the impurity motion. Our results provide a new approach to studying quantum magnetism, mobile impurities in quantum fluids and polarons in lattice systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call