Abstract

The reduced density operator of a particle coupled to a fermionic environment (metal electrons) is written in terms of a Feynman-Vernon influence functional. Two different approaches are used in order to achieve this goal. Firstly, the environmental interacting electron gas is treated in RPA and the coupling is correctly accounted for up to second order in perturbation theory. Then the local and tight-binding models are studied. For the latter a second approach for obtaining the influence functional is used in the narrow-band limit. It is found that the popular representation of the environment in terms of a single set of harmonic oscillators is not feasible unless the particle is confined to move in a local region of radial extension r ≃ kF-1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.