Abstract

In recent years, the quantum behaviour of Josephson devices has been the object of thorough experimental investigation, mainly with the objective of studying quantum mechanics in macroscopic objects. At present, the same quantum properties are being exploited with the aim of the physical implementation of quantum bits and quantum registers. Here we present measurements on a system containing potential qubits, namely a rf SQUID and a hysteretic dc SQUID, magnetically coupled, under microwave excitation; the devices are realized on a single chip with trilayer Nb/AlOx/Nb technology. On this system we have performed a set of measurements to test the dc SQUID response to short pulses of microwaves ranging from 2 to 32 GHz. A first analysis of our results indicates the presence of population oscillations in the hysteretic dc SQUID. This result is very promising in view of using SQUIDs for more complex qubits systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.