Abstract

We analyze the spreading of wave packets in two-dimensional quasiperiodic and random tilings as a function of their codimension, i.e., of their topological complexity. In the quasiperiodic case, we show that the diffusion exponent that characterizes the propagation decreases when the codimension increases and goes to 1/2 in the high codimension limit. By contrast, the exponent for the random tilings is independent of their codimension and also equals 1/2. This shows that, in high codimension, the quasiperiodicity is irrelevant and that the topological disorder leads in every case, to a diffusive regime, at least in the time scale investigated here.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.