Abstract

We present in this paper a time-dependent quantum wave packet calculation of the initial state selected reaction probability for H + Cl2 based on the GHNS potential energy surface with total angular momentumJ = 0. The effects of the translational, vibrational and rotational excitation of Cl2 on the reaction probability have been investigated. In a broad region of the translational energy, the rotational excitation enhances the reaction probability while the vibrational excitation depresses the reaction probability. The theoretical results agree well with the fact that it is an early down-hill reaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.