Abstract

In molecular collisions, long-lived complexes may be formed that correspond to quasi-bound states in the van der Waals potential and give rise to peaks in the collision energy-dependent cross-sections. They are known as 'resonances' and their experimental detection remains difficult because their signatures are extremely challenging to resolve. Here, we show a complete characterization of quantum-dynamical resonances occurring in CO-He inelastic collisions with rotational CO(j = 0->1) excitation. Crossed-beam scattering experiments were performed at collision energies as low as 4 cm(-1), equivalent to a temperature of 4 K. Resonance structures in the measured cross-sections were identified by comparison with quantum-mechanical calculations. The excellent agreement found confirms that the potential energy surfaces describing the CO-He van der Waals interaction are perfectly suitable for calculating state-to-state (de)excitation rate coefficients at the very low temperatures needed in chemical modelling of the interstellar medium. We also computed these rate coefficients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call